Package index
-
absValue()
- Function to return absolute values
-
apply_burn_in()
- Apply Burn-In
-
apply_thinning()
- Apply Thinning
-
baseline_data_default
- Default Baseline Data
-
calculateBaseline()
- Calculate Baseline Risk
-
calculateEmpiricalDensity()
- Calculate Empirical Age Density
-
calculateNCPen()
- Calculate Age-Specific Non-Carrier Penetrance
-
calculate_weibull_parameters()
- Calculate Weibull Parameters
-
combine_chains()
- Combine Chains Function to combine the posterior samples from the multiple chains.
-
combine_chains_noSex()
- Combine Chains for Non-Sex-Specific Estimation
-
distribution_data_default
- Default Distribution Data
-
drawBaseline()
- Draw Ages Using the Inverse CDF Method from the baseline data
-
drawEmpirical()
- Draw Ages Using the Inverse CDF Method from Empirical Density
-
generate_density_plots()
- Generate Posterior Density Plots
-
generate_summary()
- Generate Summary
-
generate_summary_noSex()
- Generate Summary for Non-Sex-Specific Estimation
-
imputeAges()
- Impute Missing Ages in Family-Based Data
-
imputeAgesInit()
- Initialize Age Imputation
-
imputeUnaffectedAges()
- Impute Ages for Unaffected Individuals
-
lik.fn()
- Penetrance Function
-
lik_noSex()
- Likelihood Calculation without Sex Differentiation
-
makePriors()
- Make Priors
-
mhChain()
- Execution of a Single Chain in Metropolis-Hastings for Cancer Risk Estimation
-
mhLogLikelihood_clipp()
- Calculate Log Likelihood using clipp Package
-
mhLogLikelihood_clipp_noSex()
- Calculate Log Likelihood without Sex Differentiation
-
out_sim
- Simulated Output Data
-
penetrance()
- penetrance: A Package for Penetrance Estimation
-
plot_acf()
- Plot Autocorrelation for Multiple MCMC Chains (Posterior Samples)
-
plot_loglikelihood()
- Plot Log-Likelihood for Multiple MCMC Chains
-
plot_pdf()
- Plot Weibull Probability Density Function with Credible Intervals
-
plot_penetrance()
- Plot Weibull Distribution with Credible Intervals
-
plot_trace()
- Plot MCMC Trace Plots
-
printRejectionRates()
- Print MCMC Rejection Rates
-
prior_params_default
- Default Prior Parameters
-
risk_proportion_default
- Default Risk Proportions
-
simulated_families
- Processed Family Data
-
test_fam2
- Processed Family Data
-
transformDF()
- Transform Data Frame
-
validate_weibull_parameters()
- Validate Weibull Parameters