Skip to contents

All functions

ALL_GENE_VARIANT_TYPES
Mapping of genes to supported variants
CANCER_NAME_MAP
Mapping of short and long cancer names
CANCER_TYPES
Currently supported cancer types
GENE_TYPES
Currently supported gene types
apply_burn_in()
Apply Burn-In
apply_thinning()
Apply Thinning
baseline_data_default
Default Baseline Data
calcPedDegree()
Calculate Degree of Relationship in Pedigree
calculateBaseline()
Calculate Baseline Risk
calculateEmpiricalDensity()
Calculate Empirical Density for Non-Affected Individuals
calculateNCPen()
Calculate Age-Specific Non-Carrier Penetrance
calculate_lifetime_risk()
Calculate Lifetime Risk of Cancer
calculate_weibull_parameters()
Calculate Weibull Parameters
combine_chains()
Combine Chains Function to combine the posterior samples from the multiple chains.
combine_chains_noSex()
Combine Chains for Non-Sex-Specific Estimation
distribution_data_default
Default Distribution Data
drawBaseline()
Draw Ages Using the Inverse CDF Method from the baseline data
drawEmpirical()
Draw Ages Using the Inverse CDF Method from Empirical Density
generate_density_plots()
Generate Posterior Density Plots
generate_summary()
Generate Summary
generate_summary_noSex()
Generate Summary
imputeAges()
Impute Ages Based on Affection Status and Sex
imputeAgesInit()
Initialize Ages Using a Uniform Distribution
lik.fn()
Penetrance Function
lik_noSex()
Likelihood Calculation without Sex Differentiation
makePriors()
Make Priors
mhChain()
Execution of a Single Chain in Metropolis-Hastings for Cancer Risk Estimation with Sex Differentiation
mhChain_noSex()
Execution of a Single Chain in Metropolis-Hastings for Cancer Risk Estimation without Sex Differentiation
mhLogLikelihood_clipp()
Calculate Log Likelihood using clipp Package
mhLogLikelihood_clipp_noSex()
Calculate Log Likelihood without Sex Differentiation
out_sim
Simulated Output Data
penetrance()
Bayesian Inference using Independent Metropolis-Hastings for Penetrance Estimation
plot_pdf()
Plot Weibull Probability Density Function with Credible Intervals
plot_penetrance()
Plot Weibull Distribution with Credible Intervals
plot_trace()
Plot Trace
printRejectionRates()
Print Rejection Rates
prior_params_default
Default Parameter Settings for Prior Distributions
risk_proportion_default
Default Risk Proportion Data
test_fam1
Processed Family Data
test_fam2
Processed Family Data
transformDF()
Transform Data Frame
validate_weibull_parameters()
Validate Weibull Parameters